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ABSTRACT
Aggregate management is equally significant for both streaming
and query workloads. However, the prevalent approach of sepa-
rating stream processing and query analysis impairs performance,
hinders aggregate reuse, increases resource demands, and low-
ers data freshness. 𝜇Wheel addresses this problem by unifying
aggregate management needs within a single system optimized
for continuous event streams. 𝜇Wheel pre-aggregates and indexes
timestamped data arriving out-of-order, enabling the sharing of
aggregates across arbitrary time intervals while respecting low
watermarks. Our performance analysis demonstrates that 𝜇Wheel
dramatically outperforms current aggregate sharing techniques for
high-volume streaming, particularly when handling numerous con-
current window slides. Crucially, 𝜇Wheel also delivers performance
comparable to specialized pre-aggregation indexes for supporting
ad-hoc queries and does so with significantly reduced storage re-
quirements. 𝜇Wheel’s efficiency stems from its compact wheel-
based data layout, featuring implicit timestamps, a query-agnostic
time hierarchy, and a query optimizer designed to minimize aggre-
gate operations.
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1 INTRODUCTION
Modern data processing needs impose the capability to perform
both online streaming computation and offline ad-hoc analysis on
the same input data. Currently, the combination of low-latency
event streaming workloads with adhoc queries is not natively fea-
sible to achieve in unison, requiring practitioners to execute each
workload to its corresponding system silo. For instance, Uber [17]
utilizes Apache Flink [11] to process data in real-time for stream
processing needs and additionally leverages Apache Pinot [23] to
serve exploratory queries on the same data since Flink and other
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Figure 1: 𝜇Wheel for streaming and adhoc queries

stream processors [5, 20, 25, 32, 33] do not offer this capability. Con-
temporary stream processing systems employ state backends or
indexes passively, focusing solely on managing the storage of aggre-
gates for streaming queries. This eliminates the prospect of reusing
these aggregates produced online for offline analytical aggregation.
This practice results in resource overutilization when both forms of
analytics are required, necessitating the deployment of a separate
system. Despite aggregating the same data, different storage tech-
nologies are typically utilized while mandating an external ETL
process which leads to excessive complexity. An additional consid-
eration pertains to data freshness. Offline analysis traditionally lags
behind real-time insights, with data often minutes or hours old due
to reliance on bulk- instead of stream-ingestion. The prospect of uti-
lizing a common system that manages and indexes aggregate state
could jointly permit both online and offline queries to obtain excep-
tionally up-to-date results. However, given that these two diverse
technologies have evolved and matured independently, the chal-
lenge lies at achieving shared aggregate management transparently
without altering their principled design. Merely enhancing stream
processors with query capabilities, or alternatively, introducing
stream event ingestion into traditional OLAP databases has proven
to be highly complex in practice due to the paradigm mismatch
of these two technologies [15, 16, 34]. For example, state-of-the-
art stream processors employ out-of-order processing semantics
through low watermarking which is incompatible with the trans-
actional nature of OLTP databases or the design of append-only
OLAP databases.

In this work, we investigate the prospect of a new form of ag-
gregate management middleware that enables this marriage of
workloads for combined stream and analytical use. To that end, we
propose 𝜇Wheel, an aggregate management system capable of sus-
taining high-throughput stream aggregates and external temporal
adhoc queries. 𝜇Wheel can be used as either a standalone system
or embedded as a state backend plugin within existing stream pro-
cessing engines. 𝜇Wheel employs pre-materialization in multiple
event-time dimensions while respecting event-time progress via its
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native adoption of low-watermarking [2, 4, 30]. Furthermore, its
built-in optimizer allows for seamless refinement and tuning of arbi-
trary temporal range-based aggregate functions used within sliding
windows or ad-hoc exploration based on SIMD and other strategies
that are termed optimal depending on the algebraic properties of
the provided user-defined functions.
Contributions. In this paperwe provide a thorough design overview
of the 𝜇Wheel aggregate management system which builds as an
adaption and extension of compact hierarchical time wheel data
structures [45] often used today in operating systems for efficient
scheduling purposes. More concretely we detail the following con-
tributions:

(1) We indicate motivating evidence towards the need for com-
bined stream and query management under the same system
architecture (section 2).

(2) We describe the internals and optimization mechanisms of
𝜇Wheel (section 3), an aggregate management system for
streams and queries written in Rust . 𝜇Wheel features a novel
wheel-centric query optimizer (section 3.4.4) that minimizes
the number of required aggregate operations. Next, 𝜇Wheel
proposes a lazy aggregate synchronization (section 3.6) ap-
proach via low watermarking enhancing performance under
high-volume stream workloads.

(3) We employ a detailed performance evaluation (section 4.2) of
𝜇Wheel against state-of-the-art window aggregation sharing
techniques (e.g., FiBA [39]) and show its distinct performance
benefits. 𝜇Wheel has up to 9x higher throughput under write-
intensive streams in combination with a high number of
concurrent window slides.

(4) Finally, we compare the analytical performance (section 4.3)
on temporal queries in 𝜇Wheel against both pre-aggregating
and on-demand solutions.𝜇Wheel exhibits comparable per-
formance to specialized pre-aggregation indexes with signif-
icantly less memory resources. In addition, 𝜇Wheel outper-
forms on-demand solutions such as DuckDB [35] for queries
on arbitrary time ranges by orders of magnitude.

2 MOTIVATION AND OVERVIEW
Common stream aggregations and temporal adhoc queries both
evidently serve a common purpose, that is the need to materialize
computations over time intervals. The core difference lies in the
granularities of focus in these two types of computation. Namely,
stream window aggregates [13, 47] operate at the length of seconds
or minutes, whereas offline analytical queries require higher-order
aggregation, e.g., at the level of hours, days or months. 𝜇Wheel
materializes aggregates on-the-fly over arbitrarily configured time
dimensions to serve both of these needs.
Motivating Example. Figure 1 showcases two alternative configu-
rations used to support temporal adhoc queries: I) One alternative
includes the combination of a streaming system with an external
offline database. The streaming system in this case is responsible
for materializing different window aggregates from out-of-order
streams. The produced aggregates are then inserted into an external
database which is responsible for answering external adhoc queries
based on the pre-computed results. II) Alternatively, as depicted in
Figure 1, input data can also be fed directly into a dedicated OLAP

Techniques Temporal Aggregation Out-of-order
Stream Ingestion Query Optimizer

□ SQLite [18] Index(B-Tree) dynamic; fixed ✖ ✔

□ DuckDB [35] SIMD; Index(ART) dynamic; fixed ✖ ✔

□ PBA[51]/Cutty[14] slicing; Multi-core static; sliding ✖ ✖

□ Scotty[44] slicing static; sliding ✔ ✖

□ FiBA [39] Index(Finger B-Tree) dynamic; sliding ✔ ✖

□ □ 𝜇Wheel slicing; Index(wheels); SIMD dynamic; sliding ✔ ✔

Table 1: Feature comparison of top-performing, embeddable
□ stream and □ query aggregate management solutions

database (e.g., DuckDB [35]) through “change data capture” (CDC)
or batching. This enables on-demand temporal queries on arbi-
trary time dimensions, offering ad hoc analysis flexibility. However,
the lack of stream capabilities hinders real-time decision-making.
Among the two cases (I, II) we observe an overarching need to com-
pute and maintain aggregates. In case I this requirement is posed
on the streaming system used to facilitate the pre-aggregates, at the
expense of maintaining two redundant storage systems and writing
custom aggregation logic in the streaming system. These limita-
tions cannot be circumvented since stream aggregation solutions
are limited to embedded use [10] and further lack the ability to
pre-materialize multi-dimensional computations by design. Case II
relies solely on an offline external database and therefore inherently
lacks support for pre-materialization, necessitating queries to wait
until all results are computed from scratch. As we illustrate in case
III, 𝜇Wheel can benefit both configurations by either enhancing
a stream ETL pipeline with external query support or substitut-
ing the database altogether. As an example, consider the following
aggregation queries involving online and offline use respectively:

# Online Stream Aggregation (Sliding Window)
SELECT HOP(window_start , INTERVAL '1' MINUTE),
SUM(page_views)
FROM website_traffic
GROUP BY HOP(TUMBLE(rowtime, INTERVAL '5' MINUTE)
AS window_start, INTERVAL '1' MINUTE)

# Offline Analytical Aggregation
SELECT SUM(page_views)
FROM website_traffic
WHERE rowtime
BETWEEN '2023-03-01 10:00:00'
AND '2023-03-20 10:30:00'

While both queries calculate page view aggregations, the first pro-
vides continuous updates on recent website traffic using a slid-
ing window (Flink-style SQL), whereas, the latter targets offline
analysis over a time range. 𝜇Wheel with its unified stream and
analytical storage can optimize both queries by effectively reusing
pre-materialized aggregates. This leads to faster query responses, re-
duced computational overhead, and minimized resource utilization,
having a single system to serve both queries.

A closer consideration of available embeddable stream and query
aggregate management systems reveals a mismatch for this joint
purpose. To that end, we overview a short feature comparison in
Table 1 and further examine existing capabilities in more detail.
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□ Requirements for Stream Management. Solutions well-
suited for stream analysis share these core characteristics: 1) stream
ingestion of out-of-order data, 2) event-time integration, and 3) na-
tive support for sliding temporal aggregations (e.g., periodicwindow
aggregation). Furthermore, to enable flexible user-defined aggregate
functions, streaming solutions often rely on low-level aggregation
frameworks. Embedded query aggregate management solutions
like DuckDB prioritize bulk inserts and append-only workloads,
making them less efficient for streaming scenarios. Finally, OLTP
databases like SQLite, designed for transactional workloads and
high concurrency, are not ideal for stream analytics. The overhead
of full SQL support and concurrency mechanisms designed for mul-
tiple writers can hinder performance in stream scenarios where
there’s typically a single writer.
□ Requirements for QueryManagement. The embedded query
aggregate management landscape is dominated by DuckDB for re-
lational analytics. Most existing row-based, transactional databases
are considered unsuitable for advanced offline analytical aggrega-
tion that require features like multi-dimensional cubes and colum-
nar aggregates. At the same time, query systems typically have low
requirements in ingestion performance, but relatively higher re-
quirements in the declarativity and generality of possible dynamic
queries that can often be computed on the fly. Furthermore, to effi-
ciently execute complex analytical queries on modern hardware,
query systems typically feature query optimizers and vectorization
(SIMD) support. These capabilities are notably absent in existing
stream management solutions, as observed in Table 1.

3 DESIGN
𝜇Wheel is an event-driven aggregate management system for the
ingestion, computing, and indexing of temporal stream aggregates.
We first describe the underlying aggregation framework followed
by the distinct internal details of its wheel-based system.

3.1 Aggregation Framework
The 𝜇Wheel aggregation framework supports custom user-defined
aggregation functions, tailored for both online stream-style pre-
aggregation and ad-hoc offline aggregation over flexible time inter-
vals. In the context of data streaming, 𝜇Wheel makes no unrealistic
in-order processing assumptions. Instead, it adopts out-of-order
processing semantics via external low-watermarking [2]. To en-
sure correctness, the framework requires all provided aggregation
functions to bear basic algebraic properties such as commutativity
and associativity. Optionally, if present, invertibility is further ex-
ploited by 𝜇Wheel to offer improved query performance as shown
in Sec. 3.4.2.

𝜇Wheel shares similarities with existing frameworks [41] and
builds on five of type functions: lift, combine_mutable, freeze,
combine and lower. Combine_mutable and Freeze are two dis-
tinct functions to 𝜇Wheel introduced to facilitate integration with
low-watermarking. We denote MA as a mutable partial aggre-
gate type, whereas A is immutable. The lift: E→ MA function
maps an input record (type E) to a mutable partial aggregate type.
Combine_mutable: MA ⊙ E applies an in-place aggregation on a
mutable partial aggregate type using an input record. Freeze: MA
→ A converts a mutable partial aggregate type to an immutable one.

Combine: A ⊕ A→ A performs an incremental aggregation of two
immutable partial aggregates, resulting in a new partial aggregate.
Lastly, Lower: A→ E’ transforms an immutable partial aggregate
into a final aggregate type (e.g., sum/count→ avg).

3.2 Architectural Overview
The architecture of 𝜇Wheel adopts a single-writer, multiple-reader
access pattern designed around the notion of low watermarks [2, 4,
30] as follows: A low watermark w indicates that all records with
timestamps 𝑡 ≤ w have been ingested. 𝜇Wheel takes advantage of
this property and the single-writer principle that is dominant in
dataflow processing systems [11, 33] and separates the write and
read paths. Partial aggregates are indexed by timestamps and can
be updated until the system’s low watermark has advanced above
their assigned timestamps. All aggregate operations are handled
by internal data structures called “wheels”. Writes are handled by a
writer wheel (sec. 3.3), which supports in-place aggregation and is
optimized for single-threaded ingestion. Whereas, reads are man-
aged by a hierarchical time-indexed reader wheel (sec. 3.4) equipped
with a query optimizer whose cost function aims to minimize the
total number of aggregate operations.
Interface. 𝜇Wheel exposes five core functions:
• create(a: Aggregator, 𝑤𝑠𝑡𝑎𝑟𝑡: Watermark, c: Config)
initializes a 𝜇Wheel with a user-defined Aggregator contain-
ing the types and functions detailed in Sec. 3.1, a start low
watermark𝑤𝑠𝑡𝑎𝑟𝑡 , and a config object which holds tunable
parameters (detailed in sec. 3.3 and 3.4).
• insert(v: E, t: Time) inserts a record v at time t.
• window(range: Time, slide: Time) pre-configures a pe-
riodic sliding window. This is used to optimise and manage
incremental window aggregates. Complete windows are re-
turned by 𝜇Wheel when advancing its watermark (sec 3.6).
• advance_to(t: Time) advances the internal watermark to
time 𝑡 if 𝑡 is higher than the current watermark, finalizing
all pre-aggregates up to time t and returning all complete
window aggregates in a vector (if any). We often adopt the
term “ticking” to denote the internal time advancement.
• query(start: Time, end: Time) returns the final aggre-
gate computed between the start and end timestamps.

Example. Figure 2 details how the wheel-based system works.
𝜇Wheel maintains multiple time-indexed circular buffers, which we
call wheels, one for each respective time resolution (i.e., seconds,
minutes, etc.). Each wheel is characterized by a head and tail pointer
that indicates its elapsed rotation progress. The writer wheel and
the reader wheel’s lowest-level wheel are kept in sync through a
shared granularity and watermark. Consequently, new insertions
consistently occur at or above the latest computed low watermark.
Figure 2 depicts the process of ticking a 𝜇Wheel (i.e. adding time
progress) which is done exclusively through watermark progres-
sions via the advance_to function. Upon advancing the current
low watermark to 09:00:00 in the example, a full rotation (shifting
of H) occurs in all wheels, causing a summarization of aggregates
across all wheels. The example query (sum over [6am-9am]) com-
putes the sum over three slots in the hour dimension, accessing
complete aggregate results since the watermark (H in hour-wheel)
has progressed over the intended slots.
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Figure 2: Ingestion, ticking and querying in 𝜇Wheel

3.3 Writer Wheel
Thewriter wheel is a time-indexed circular buffer designed to ingest
stream aggregates at high throughput. Internally, the wheel nests
two different wheels: a Write-ahead and an Overflow Wheel.
Write-ahead Wheel. A pre-allocated fixed-sized wheel that sup-
ports in-place aggregation of slots above or equal to the current
low watermark. Users of 𝜇Wheel may configure the write-ahead
capacity at creation time by passing it in as a configuration. For
instance, a write-ahead wheel configured with a capacity of 64 slots
allows pre-aggregation up to 64 time units (e.g., seconds). Inserts
into the write-ahead wheel are efficient as the slots are event-time
indexed, allowing direct access to any given slot.
OverflowWheel. Events with timestamps that exceed the capacity
of the write-ahead wheel are scheduled into a Hierarchical Timing
Wheel [45] and inserted into the write-ahead wheel once the low
watermark has advanced far enough.
Mechanism.Algorithm 1 shows the pseudocode for both insertions
and ticking (i.e., time advancement). The insert function checks
for three possible scenarios. First, if the given timestamp is be-
low the current watermark, the record is considered late and is re-
jected (line 3). Furthermore, if the record fits within the write-ahead
wheel (line 6), then the function aggregates the record through a
combine_mutable ⊙ operation if the target wheel slot contains
an existing entry (line 9) or using the lift operator to fill the
empty slot (line 11). Otherwise the record is scheduled into the
overflow wheel (line 13) if the timestamp is too far ahead of the
low watermark.

Ticking the writer wheel (line 15) shifts the low watermark and
advances the overflow wheel across consecutive atomic time units
(seconds) (lines 16-17). Previously early records that now fit within
the write-ahead wheel’s time range are added (line 19). Lastly, the
function updates the internal head and tail pointers before returning
the aggregate of the old low watermark (line 23) which is to be
inserted into the reader wheel (sec. 3.4).
Complexity Analysis. Insertions in the writer wheel have a time
complexity of O(1) since both the write-ahead and overflow wheels

Algorithm 1 Writer Wheel Insert and Tick

1: function insert(𝑠𝑒𝑙 𝑓 , 𝑟𝑒𝑐𝑜𝑟𝑑, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)
2: if 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 < 𝑠𝑒𝑙 𝑓 .𝑤𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 then
3: return Err(𝐿𝑎𝑡𝑒)
4: else
5: 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ← 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑠𝑒𝑙 𝑓 .𝑤𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘

6: if 𝑠𝑒𝑙 𝑓 .𝑐𝑎𝑛_𝑤𝑟𝑖𝑡𝑒_𝑎ℎ𝑒𝑎𝑑 (𝑠𝑒𝑐𝑜𝑛𝑑𝑠) then
7: 𝑠𝑙𝑜𝑡 ← 𝑠𝑒𝑙 𝑓 .𝑙𝑜𝑜𝑘𝑢𝑝 (𝑠𝑒𝑐𝑜𝑛𝑑𝑠)
8: if 𝑠𝑒𝑙 𝑓 .𝑠𝑙𝑜𝑡𝑠 [𝑠𝑙𝑜𝑡] ≠ None then
9: 𝑠𝑒𝑙 𝑓 .𝑠𝑙𝑜𝑡𝑠 [𝑠𝑙𝑜𝑡] ⊙ 𝑟𝑒𝑐𝑜𝑟𝑑
10: else
11: 𝑠𝑒𝑙 𝑓 .𝑠𝑙𝑜𝑡𝑠 [𝑠𝑙𝑜𝑡] ← lift(𝑟𝑒𝑐𝑜𝑟𝑑)
12: else
13: 𝑠𝑒𝑙 𝑓 .𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒_𝑜𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤 (𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝,𝑑𝑎𝑡𝑎)
14: return Ok(())
15: function tick(𝑠𝑒𝑙 𝑓 )→ 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒

16: 𝑠𝑒𝑙 𝑓 .𝑤𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 ← 𝑠𝑒𝑙 𝑓 .𝑤𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 + 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 (1)
17: 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 ← self.overflow.advance(self.watermark)
18: for (record, timestamp) in entries do
19: 𝑠𝑒𝑙 𝑓 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑟𝑒𝑐𝑜𝑟𝑑, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)
20: ℎ𝑒𝑎𝑑 ← 𝑠𝑒𝑙 𝑓 .𝑤𝑟𝑎𝑝_𝑎𝑑𝑑 (ℎ𝑒𝑎𝑑, 1)
21: 𝑡𝑎𝑖𝑙 ← 𝑠𝑒𝑙 𝑓 .𝑡𝑎𝑖𝑙

22: 𝑠𝑒𝑙 𝑓 .𝑡𝑎𝑖𝑙 ← 𝑠𝑒𝑙 𝑓 .𝑤𝑟𝑎𝑝_𝑎𝑑𝑑 (𝑡𝑎𝑖𝑙, 1)
23: return 𝑠𝑙𝑜𝑡𝑠 [𝑡𝑎𝑖𝑙]

maintain constant complexities. The writer wheel demands O(n)
space due to the overflow wheel’s linear complexity in the number
of slots it can schedule.

3.4 Reader Wheel
The reader wheel indexes complete aggregates hierarchically across
multiple event-time dimensions. It employs a novel wheel-centric
query optimizer whose cost function minimizes the required num-
ber of aggregate operations for a given query.

3.4.1 Overview. Driven by the hierarchical nature of time, a reader
wheel is composed of different circular-based data structures called
wheels, each maintaining event-time indexed aggregates across a
different time granularity. We organize wheels into a data struc-
ture which we call Hierarchical Aggregate Wheel. Its hierarchical
layout in combination with implicit timestamps enables a compact
representation of aggregates with a low memory footprint across
time dimensions.
Mechanism. Each wheel within the Hierarchical Aggregate Wheel
maintains regular slots, each representing a concrete time unit (e.g.,
1 hour). In addition, the wheel also manages a partial aggregate of
its current rotation and returns it after completing a full rotation.
This way, a wheel can be re-used across different hierarchical levels
(e.g., seconds, minutes, hours, and days). For instance, a wheel rep-
resenting hours would fully rotate once ticked to the rotation point
of 24 and return a complete one-day rolled-up partial aggregate.
In this paper, we assume granularities from seconds to years. For
example, to represent aggregates spanning 10 years, we make use
of the following wheels: seconds(60), minutes(60), hours(24), days(7),
weeks(52), and years(10). Such a configuration involves a total of
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213 wheel slots to support rolling up aggregates across ten years
with second granularity. User-defined aggregate schemes may be
configured at creation time (sec. 3.2). By design, wheels limit data
retention by not maintaining slots exceeding their capacity. How-
ever, In order to support a wider range of analytics, data retention
policies within wheels can be customized. This configuration guar-
antees slots are held for a specific period. For example, if consistent
access to the previous day’s aggregates at second-level granular-
ity is necessary, the seconds wheel should be instantiated with an
appropriate retention policy.

3.4.2 General Optimizations. This section covers optimization tech-
niques used during query planning and execution.
SIMD. The 𝜇Wheel aggregation framework accommodates this ca-
pability via an optional Combine_Simd user-defined function. Users
can implement this function with explicit SIMD instructions for
accelerated queries across numerous wheel slots. If not provided,
the framework defaults to decomposing a time-slice of partial ag-
gregates into a series of combine operations (e.g., 𝑥1 ⊕ 𝑥2 ⊕ .. ⊕ 𝑥𝑛).
Invertibility. 𝜇Wheel’s aggregation framework introduces an op-
tional Combine_Inverse: A ⊖ A→ A function that instruments
deduction of partial aggregates. This function offers significant
speedups in scenarios where existing higher-order aggregates can
be reused. By directly calculating the inverse of a partial aggregate,
it avoids the need to recalculate from scratch, saving substantial
computation time.
Prefix-sumWheels. A prefix-sum [19] is an optional optimisation
targeting O(1) time complexity for range queries at the expense
of double the number of buffers needed to maintain wheels. An
additional prefix-sum wheel is used to take a binary associative
operator ⊕ and apply it on an array of N elements returning the
following [𝑥0, (𝑥0⊕𝑥1), . . . , (𝑥0⊕𝑥1⊕. . . ⊕𝑥𝑛−1)]. This allows for
arbitrary range-sum queries to execute in O(1) time using the prefix-
sum wheel. Wheels can be optionally be prefix-enabled at creation
time, given that a combine_inverse function is also provided.

3.4.3 Data Model and Wheel Operations. To detail the aggregation
framework we further explain the data and aggregation semantics
used within a reader wheel.
Wheels. We denote each wheel granularity with lowercase letters.
For instance, a seconds wheel is defined as s. e.g., s[begin, end)
refers to a closed-open interval of aggregates in a “seconds” wheel.
Wheel Aggregation. 𝑓𝑤 computes aggregates within a single
wheel. For example, the function 𝑓𝑤 (𝑠 [0, 2)) combines two par-
tial aggregates from a “seconds” wheel.
Combined Aggregation. Since wheel aggregations return a single
aggregate, they can compose arbitrary aggregations in a single
wheel or across wheels (e.g., 𝑓𝑤 (𝑠 [0, 2)) ⊕ 𝑓𝑤 (𝑚[5, 10))).
Landmark Aggregation. A landmark aggregation 𝑓𝐿 is an opera-
tion that considers data across the whole hierarchy of wheels. In
the reader wheel, this is defined by the range [𝑤𝑠𝑡𝑎𝑟𝑡 ,𝑤𝑛𝑜𝑤) where
𝑤𝑠𝑡𝑎𝑟𝑡 represents the initial start low watermark and 𝑤𝑛𝑜𝑤 the
current low watermark. Each wheel in the hierarchical structure
maintains a total partial aggregate for its current rotation, and we
denote this aggregate as t. A landmark aggregation is broken down
to a sequence of ⊕ operations across wheels:

𝑓𝐿 = 𝑠 .𝑡 ⊕𝑚.𝑡 ⊕ ℎ.𝑡 ⊕ 𝑑.𝑡 ⊕𝑤.𝑡 ⊕ 𝑦.𝑡
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Figure 3: Combined aggregation for range [10:15:23, 13:20:50)

Inverse Landmark Aggregation. This operation takes advantage
of the invertibility property if available and reuses higher-order
aggregates from the landmark aggregation to compute an interval
of [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ). For example, assuming that the current low water-
mark 𝑤𝑛𝑜𝑤 > 8000 a range query [3000, 8000) may be computed
as such: 𝑓𝐿 ⊖ 𝑓𝑤 [𝑤𝑠𝑡𝑎𝑟𝑡 , 3000) ⊖ 𝑓𝑤 [8000,𝑤𝑛𝑜𝑤). This calculation
requires two inverse operations. However, if 𝑡𝑒𝑛𝑑 ≥ 𝑤𝑛𝑜𝑤 , the op-
eration only requires a single inverse operation. For instance, if
𝑡𝑒𝑛𝑑 and𝑤𝑛𝑜𝑤 is 10000 then the range query [3000, 10000) can be
answered through: 𝑓𝐿 ⊖ 𝑓𝑤 [𝑤𝑠𝑡𝑎𝑟𝑡 , 3000).

3.4.4 Wheel-centric Query Optimizer. We now describe the inter-
nals of the wheel-centric query optimizer whose cost function
minimizes the number of aggregate operations.
Optimizer Hints. The optimizer leverages framework-provided
hints, such as SIMD compatibility and invertibility, to further opti-
mize query execution. For instance, if SIMD support is enabled then
the query planner will favour plans where it can be fully exploited.
Cost Function. 𝜇Wheel uses a cost-based model in combination
with optimizer hints. Since data is pre-aggregated and event-time
indexed, there is no need for cardinality estimation. The exact num-
ber of aggregates to compute is known given a range [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ).
However, relying on a purely cost-based model may lead to subop-
timal execution times under different circumstances. For example,
a range query of [12:00:00, 18:30:00) can be computed in
two ways. Firstly, it can be calculated directly using 390 minutes:
𝑓𝑤 (𝑚[𝑛, 𝑛 + 390)). Alternatively, the range can be split and com-
puted using combined aggregation : 𝑓𝑤 (ℎ[12, 18)) ⊕ 𝑓𝑤 (𝑚[0, 30)),
with a cost of 37 aggregate operations.

While the second approach involves fewer operations, the first
may be faster due to optimized memory access. Furthermore, with
SIMD support, single-wheel aggregation likely becomes the faster
option since it can coalesce multiple operations into a single in-
struction. When SIMD support is absent, minimizing aggregate
operations through combined aggregation takes priority. Con-
sider this example query with the range [10:15:23, 13:20:50).
To efficiently execute this query, the generated execution plan splits
the range into multiple non-overlapping ranges, as highlighted in
Figure 3. Each leaf (blue ⊕) represents a 𝑓𝑤 within a given granu-
larity. This plan yields the final aggregate with up to 152 aggregate
operations, a 73x lower cost compared to a naive wheel aggregation
at the seconds level, which would need 11,127 ⊕ calls.
Finding the Best Plan. Figure 4 illustrates a flow chart of the
query optimizer which aims to select the optimal execution plan.
An execution plan refers to a wheel operation (sec. 3.4.3) that can
be used to compute a query. The optimizer first checks whether
the prefix-sum optimization (sec 3.4.2) is available to compute the
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Figure 4: Query optimizer logic showcasing various wheel aggregation strategies (boxes in blue)

range [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ) using the query’s lowest time granularity. This
operation requires at most one aggregate operation. If not, it checks
if the query range falls within the landmark range [𝑤𝑠𝑡𝑎𝑟𝑡 ,𝑤𝑛𝑜𝑤),
using landmark aggregation if possible since it requires very few
aggregate operations. Failing that, if the range cannot be split into
multiple non-overlapping ranges (e.g., the duration is below 60
seconds), a plain wheel aggregation is used.

Next, the optimizer assesses SIMD capabilities. By default, 𝜇Wheel
utilizes SIMD-enabled wheel aggregation at the query’s lowest
granularity if possible. Users can fine-tune this behavior with a
configurable SIMD Threshold hint to control whether to prioritize
SIMD execution or focus on reducing the number of aggregate
operations. If the plan’s computational cost (i.e., |⊕|) exceeds the
threshold, the optimizer will continue to explore ways to reduce
the number of operations.

The optimizer then checks for invertibility. Without invertibility,
the range is split for combined wheel aggregation across multi-
ple time granularities. With invertibility, the optimizer compares
the cost of the of inverse landmark aggregation against combined
aggregation, executing the lower-cost option.
Complexity Analysis. A range query [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ) can be com-
puted using various wheel-based aggregation operations as high-
lighted in Figure 4. While the number of aggregations varies across
operations, the fixed size of wheels (time dimensions) and their slot
capacities ensure a constant upper bound. The chosen aggregation
scheme configuration determines this specific upper bound.

3.5 Window Aggregation
In addition to base aggregates, the system internally incremen-
talizes and manages window aggregates specified in the API (sec.
3.2). 𝜇Wheel utilizes pairs [26], a state-of-the-art stream slicing
technique on periodic intervals. Pairs split the stream into two
alternating slices (p1, p2) as such: p2 = r mod s and p1 = s - p2.

For each active window provided by the user, 𝜇Wheel material-
izes pair generation through a circular-based window aggregator
that implements the following functions:
• push(p: Pair) Pushes a pair into the back.
• compute() Computes the current window.
• pop() Removes the oldest pair from the front.

If any window specification is configured then 𝜇Wheel will, during
time advancement (sec 3.6), populate stream slices (push), compute
window results (compute), and clean up old stream slices (pop). Since
aggregates below the low watermark won’t be modified, 𝜇Wheel is

able to use specialized in-order data structures for computing win-
dow aggregates. More specifically, 𝜇Wheel uses a TwoStacks [38]
based solution for non-invertible aggregate functions and Subtract-
on-Evict [22] for invertible ones.

Algorithm 2 𝜇Wheel Time Advancement

1: function advance_to(𝑠𝑒𝑙 𝑓 ,𝑤𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘)→ 𝑉𝑒𝑐 [𝑊𝑖𝑛𝑑𝑜𝑤]
2: 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ← 𝑤𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 − 𝑠𝑒𝑙 𝑓 .𝑤𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘

3: 𝑤𝑖𝑛𝑑𝑜𝑤𝑠 ← ∅
4: for 0 to seconds do
5: 𝑠𝑒𝑙 𝑓 .𝑟𝑒𝑎𝑑𝑒𝑟 .𝑡𝑖𝑐𝑘 (𝑠𝑒𝑙 𝑓 .𝑤𝑟𝑖𝑡𝑒𝑟 )
6: if 𝑠𝑒𝑙 𝑓 .𝑤𝑖𝑛𝑑𝑜𝑤_𝑐𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑒𝑑 () then
7: ℎ𝑎𝑛𝑑𝑙𝑒_𝑤𝑖𝑛𝑑𝑜𝑤 (𝑤𝑖𝑛𝑑𝑜𝑤𝑠)
8: return𝑤𝑖𝑛𝑑𝑜𝑤𝑠

9: function tick(𝑠𝑒𝑙 𝑓 ,𝑤𝑟𝑖𝑡𝑒𝑟 ) ⊲ Reader Wheel
10: 𝑠𝑒𝑙 𝑓 .𝑤𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 ← 𝑠𝑒𝑙 𝑓 .𝑤𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 + 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 (1)
11: if 𝑚𝑎 ← 𝑤𝑟𝑖𝑡𝑒𝑟 .𝑡𝑖𝑐𝑘 () then
12: 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑎𝑔𝑔← freeze(𝑚𝑎)
13: 𝑠𝑒𝑐𝑜𝑛𝑑𝑠_𝑤ℎ𝑒𝑒𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑎𝑔𝑔)
14: if 𝑎𝑔𝑔← 𝑠𝑒𝑐𝑜𝑛𝑑𝑠_𝑤ℎ𝑒𝑒𝑙 .𝑡𝑖𝑐𝑘 () then
15: 𝑚𝑖𝑛𝑢𝑡𝑒𝑠_𝑤ℎ𝑒𝑒𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑎𝑔𝑔)
16: . . .

17: if 𝑎𝑔𝑔← 𝑤𝑒𝑒𝑘𝑠_𝑤ℎ𝑒𝑒𝑙 .𝑡𝑖𝑐𝑘 () then
18: 𝑦𝑒𝑎𝑟𝑠_𝑤ℎ𝑒𝑒𝑙 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑎𝑔𝑔)
19: 𝑦𝑒𝑎𝑟𝑠_𝑤ℎ𝑒𝑒𝑙 .𝑡𝑖𝑐𝑘 ()
20: function handle_window(𝑠𝑒𝑙 𝑓 ,𝑤𝑖𝑛𝑑𝑜𝑤𝑠)
21: if 𝑠𝑒𝑙 𝑓 .𝑛𝑒𝑥𝑡_𝑝𝑎𝑖𝑟_𝑒𝑛𝑑 == 𝑠𝑒𝑙 𝑓 .𝑤𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 then
22: 𝑓 𝑟𝑜𝑚 ← 𝑠𝑒𝑙 𝑓 .𝑤𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 − len(𝑝𝑎𝑖𝑟 )
23: 𝑝𝑎𝑖𝑟 ← 𝑠𝑒𝑙 𝑓 .𝑟𝑒𝑎𝑑𝑒𝑟 .𝑞𝑢𝑒𝑟𝑦 (𝑓 𝑟𝑜𝑚, 𝑠𝑒𝑙 𝑓 .𝑤𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘)
24: 𝑠𝑒𝑙 𝑓 .𝑤𝑖𝑛𝑑𝑜𝑤.𝑝𝑢𝑠ℎ(𝑝𝑎𝑖𝑟 )
25: if 𝑠𝑒𝑙 𝑓 .𝑛𝑒𝑥𝑡_𝑤𝑖𝑛𝑑𝑜𝑤_𝑒𝑛𝑑 == 𝑠𝑒𝑙 𝑓 .𝑤𝑎𝑡𝑒𝑟𝑚𝑎𝑟𝑘 then
26: 𝑤𝑖𝑛𝑑𝑜𝑤𝑠.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑠𝑒𝑙 𝑓 .𝑤𝑖𝑛𝑑𝑜𝑤.𝑐𝑜𝑚𝑝𝑢𝑡𝑒 ())
27: 𝑠𝑒𝑙 𝑓 .𝑤𝑖𝑛𝑑𝑜𝑤.𝑝𝑜𝑝 ()

3.6 Lazy Synchronization
Synchronization in 𝜇Wheel refers to the advancement of time, a
process which shifts aggregates from the writer wheel to the reader.
𝜇Wheel only performs synchronization lazily once its low water-
mark is advanced. This design choice has a twofold purpose. First,
it enables 𝜇Wheel to avoid costly index maintenance (e.g., tree
rebalance typically employed in aggregation trees [39, 41]) in the
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hot path of writes. Secondly, it creates a clear separation between
writes and reads, enabling concurrent ingestion and querying.
Mechanism. Algorithm 2 illustrates the synchronization process.
It starts by calculating the number of atomic units (seconds) it
can advance (line 2) and initializes an empty vector (line 3) for
window results (if window support is enabled). For each second of
advancement, it triggers the reader’s tick function (line 5) using the
writer wheel as input. The tick function updates the reader wheel
by advancing the low watermark (line 10), ticking the writer wheel
(line 11), freezing the result into a partial aggregate (line 12), and
inserting it into the lowest granularity wheel (line 13). Next, the
hierarchical wheels within the reader are also ticked as needed.

Finally, if 𝜇Wheel has any windows configured (line 6) it goes
ahead with window management. Window aggregates (sec. 3.5)
are managed by checking if the next pair (stream slice) has ended
(line 21), creating pairs by querying the reader wheel and inserting
it into the window aggregator (line 23-24), computing windows
when the low watermark reaches the end of a window and inserting
it into the windows vector (line 26), and cleaning up old window
aggregates (line 27).
Complexity Analysis. Time advancement in 𝜇Wheel has a time
complexity of O(n) where n is the number of ticks (seconds) required
to advance to the new low watermark.

4 EVALUATION
The aim of 𝜇Wheel is a versatile system that can be used for both
stream and ad-hoc analytics. We evaluate 𝜇Wheel in each aspect
through experiments with online stream aggregation (sec. 4.2) and
offline analytical aggregation (sec. 4.3). 𝜇Wheel is publically avail-
able and provided as a Rust library1.

4.1 Experimental Setup
All experiments were carried out on a Linux machine running ker-
nel 5.18.0 equipped with: 2.30Ghz Intel(R) Xeon(R) Gold 5218 CPU
with 251GB DRAM and 32 physical cores. The machine has access
to AVX512 SIMD instructions. Our experiments include systems de-
veloped in C++ and Rust. We compile code in the former using g++
version 9.4.0 and the latter using rustc 1.77.0-nightly. Furthermore,
each experiment was repeated five times. For throughput metrics,
we calculated the average. To analyze the overall distribution of
latency, we merged latency percentiles (e.g., p95th) across the runs.

4.2 Online Stream Aggregation
We now aim to investigate how 𝜇Wheel compare to the existing
state-of-the-art for streaming window aggregation.
Baselines:We compare 𝜇Wheel against FiBA [39]. We include two
versions of FiBA, one pre-aggregating data at the same granularity
as 𝜇Wheel (1-second), which we refer to simply as FiBA and a
coarse-grained (CG) variant that slices at the granularity of the
window slide. We opted out of including a modern stream processor
such as Apache Flink since FiBA has been shown to outperform it
[40].
Data.We use two real-world datasets in our evaluation. First, we
replay the NYC Citi Bike dataset used in the FiBA paper which
contains events from Aug-Dec 2018 with a total of 8,010,578 events,
1https://github.com/uwheel/uwheel

with an average of below 1 events/s and 45.76% arriving out-of-
order. Secondly, we use the DEBS12 Grand Challenge dataset [24]
of manufacturing machines, a common dataset used to evaluate
streaming systems [14, 42] with 32,390,519 events recorded between
22nd of Feb 2012 and 20th of March 2012, with an average of 100
events/s and 1.5% events arriving out-of-order.
Configuration: For 𝜇Wheel we use two versions with write-ahead
sizes of 64 and 512 slots. In addition, we disable optimizations
related to the invertibility property. For FiBA, we use two bfinger
variants with tree arity of 4 and 8 as in the original paper. We
include bulk eviction functionality from the latest work [40] but no
bulk inserts, as the evaluation focuses on online stream aggregation.
In addition, bulk inserts in FiBA require batches to be sorted in
timestamp order. FiBA and its tree structure are not designed with
a pre-allocated write-ahead section. However, we configure FiBA
to use the mimalloc [27] allocator, which lowers the tail latencies.
Queries.We run sliding window aggregation queries with varying
range and slide values. For all executions, we use a sum aggregation
function of a 64-bit unsigned integer. For the NYC Citi Bike dataset,
we calculate the sum of trip durations, whereas for DEBS12, we
compute the aggregated energy consumption for one of the sensors.
We use the same watermark generator configured with a frequency
of 100 for all solutions. i.e., every 100 events the generator pro-
gresses and disseminates the watermark which causes complete
window computations downstream.

4.2.1 Impact of range and slide ratio. We now study the impact of
different range and slide ratios. High ratios are easier to manage
and compute due to the low number of concurrent slides involved
compared to low ratios, which could potentially require the man-
agement of thousands of concurrent slides for each window.
Workload.We run two sliding window aggregation setups with
a slide ratio of 3 and 300. We increase the range and slide in both
setups while maintaining the same ratio.
High ratio. As shown in Figure 5 𝜇Wheel and coarse-grained FiBA
exhibit comparable and consistent performance over all NYC Citi
Bike dataset window setups. Regular FiBA, on the other hand suffers
from a significant performance drop having a growingwindow slide
size as it has to maintain more tree nodes. 𝜇Wheel with a write-
ahead capacity of 64 slots have reduced performance compared
to the 512-slot variant. To our knowledge, this is due to excessive
out-of-order events exceeding its capacity. In turn, this leads to
aggregates being scheduled into 𝜇Wheel’s overflow wheel (sec. 3.3)
to be processed later once the watermark has advanced. In the more
write-intensive DEBS12 machine dataset, we observe that 𝜇Wheel
outperform FiBA in all setups. In this mostly in-order dataset, all
events fit within the wheels write-ahead section, contributing to
consistent performance.
Low ratio. Figure 6 reveals that both FiBA variants suffer from
significant drops in throughput when there is an increase in the
number of concurrent window slides. The best performing FiBA
variant has on average 9x worse throughput in the DEBS12 dataset
and 11x in the NYC Citi Bike dataset.
Summary.We observe that 𝜇Wheel shows consistent performance
with varying slide ratios and growing window sizes. In addition,
𝜇Wheel outperforms FiBA when the write intensity is high or when
there is an increasing number of concurrent window slides.
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4.2.2 Lazy Synchronization. What is the impact of Lazy Synchro-
nization (sec 3.6)?. First,we look at the workload distribution of
two real-world datasets to see how much time is spent on inserts.
Secondly, we study the latency of insertions. For the remainder
of this section, we’ll refer to the low-ratio execution described in
Section 4.2.1
Workload Distribution. Figure 7 shows the workload distribution.
The NYC Citi Bike dataset has a lower insert rate of events per
second, which can be observed in the distribution. With the lowest
slide of 1s, NYC Citi Bike is spending around 38% of the time on
inserts, whereas it is 85% in the DEBS12 dataset. The time spent on
inserts increases with growing slide sizes.
Insert Latency. Figure 8 highlights the p95 latency of inserts.
𝜇Wheel execute inserts with low latency and remain consistent
over each window setup. FiBA, on the other hand, experiences
higher tail latencies and worsens with growing window sizes in
the write-intensive DEBS12 dataset.
Summary. We show using real-world data that inserts in most
window setups dominate the execution compared to queries and
advancing the watermark. Tree-based aggregate stores such as FiBA
couple inserts and index maintenance together, which increases
the write complexity. 𝜇Wheel takes advantage of the fact that low
watermarking is used in practice [3, 6, 11, 48] and decouples the
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write and read paths, and performs synchronization lazily when
the low watermark is advanced. This separation enables 𝜇Wheel to
achieve lower insert latencies, improving the overall performance.

4.2.3 Summary. The results show that 𝜇Wheel is not penalized to
the same degree as FiBA regarding varying out-of-orderness, write
intensity, and number of concurrent window slides. 𝜇Wheel out-
performs the existing state-of-the-art by orders of magnitude under
high write-intensity scenarios in combination with a high number
of concurrent window slides. FiBA only outperforms 𝜇Wheel when
both the write intensity and the number of concurrent window
slides are low. 𝜇Wheel however has comparable performance under



µWheel: Aggregate Management for Streams andQueries DEBS ’24, June 24–28, 2024, Villeurbanne, France

(3m, 1s) (15m, 3s) (30m, 6s) (45m, 9s) (1h, 12s)
Window (range, slide)

102

103

104

p9
5 

la
te

nc
y 

(n
an

os
ec

on
ds

) (a) NYC Citi Bike

(3m, 1s) (15m, 3s) (30m, 6s) (45m, 9s) (1h, 12s)
Window (range, slide)

(b) DEBS12

Figure 8: Streaming Window Aggregation (SUM) Insert Latency - Low Ratio

these circumstances while simultaneously organizing aggregates
for other diverse analytical needs.

4.3 Offline Analytical Aggregation
We now study the analytical query performance of 𝜇Wheel. Our
evaluation compares 𝜇Wheel to other embeddable query aggre-
gation solutions, including both pre-aggregation and on-demand
approaches. We include three versions of 𝜇Wheel in the evaluation:
• 𝜇Wheel: a wheel with optimization hints turned off (i.e.,
query planner simply picks the plan with the minimum
amount of aggregate operations).
• 𝜇Wheel-hints: a wheel with framework hints enabled (i.e.,
optimizer favors SIMD-centric aggregate plans, maximimiz-
ing contiguous memory access).
• 𝜇Wheel-prefix: a wheel which supports prefix-sum queries
on all wheels (i.e., optimizer prioritizes pre-aggregation re-
use for invertible functions at the expense of additional space
requirements).

We implement and use the same aggregator for all 𝜇Wheel vari-
ants, configured to retain all wheel slots for the experiment. The
aggregator is equipped with SIMD capabilities and we set the SIMD
Threshold (sec. 3.4.4) to 15000, meaning that 𝜇Wheel-hints favors
single-wheel aggregations when the number of ⊕ calls is below
this threshold.
Data. We synthetically generate our event stream data using a
subset of fields from the schema of the NYC Taxi dataset [1]. Specif-
ically, we include the dropoff timestamp and fare amount fields
where the former is used for time filtering and the latter as a mea-
sure for analytical purposes. We store each variable as a 64-bit
unsigned integer.
Baselines. We categorize our baseline approaches into on-demand
aggregation and pre-aggregation methods:
BTree: A BTree implementation from the Rust standard library that
indexes the raw data and computes aggregates on demand.
DuckDB: A state-of-the-art embedded OLAP DB [35] that is often
used today for high-performance on-demand aggregation. Our im-
plementation utilizes DuckDB (version 0.10.0) with Rust bindings2.
After our own experimentation, we’ve chosen to operate DuckDB
in disk mode for two primary reasons: 1) negligible performance
loss compared to in-memory operation, and 2) disk-based storage’s

2https://github.com/duckdb/duckdb-rs

support for data compression. In addition, this is how the database
is most commonly used.
FiBA: A specialized pre-aggregation data structure [39], for sliding
window aggregation that also supports arbitrary time-range queries.
We evaluate FiBA with varying fanout degrees: 2, 4, and 8.
Segment Tree: A representative state-of-the-art static data struc-
ture [8] optimising for pre-computed aggregations with no update
support.
Metrics.We measure query execution latency across all systems.
Note that with the exception of DuckDB, the systems employ stati-
cally compiled functions. DuckDB’s reliance on SQL string parsing
introduces a degree of variability. However, the impact of this pars-
ing overhead is likely to be minor relative to DuckDB’s overall
execution time. In addition to latency, we measure storage con-
sumption during experiments. For DuckDB, we utilize the PRAGMA
database_size command to access the storage information. Space
usage in the remaining systems is primarily calculated based on
the size of stored aggregates, with timestamps included in systems
where they are maintained.
Queries.We evaluate the systems using two types of data aggrega-
tion queries, categorized into queries Q1 and Q2.
Q1: Data Aggregation

select sum(fare_amount) from rides

Q2: Data Aggregation with Time Filter

select sum(fare_amount) from rides
where timestamp between ? and ?

4.3.1 General Performance. In this section, we study the perfor-
mance of the systems by executing queries Q1 and Q2.
Workload. We generate datasets containing one event per sec-
ond, spanning two distinct time periods: one day and seven days
respectively. The start date is defined as 2023-10-01 00:00:00. For
each period, we execute 50,000 queries per query type, recording
the p95 latency. The p95 latency metric allows for a focus on the
performance experienced by the vast majority of queries. In query
Q2, we apply time filters at varying granularity levels. For example,
q2-seconds signifies that the smallest represented time unit is sec-
onds (e.g., a filter from 12:15:30 to 13:20:15). We generate time filters
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with uniformly distributed start dates and durations. To achieve
this, we first select a random starting point within the period and
then determine a random duration, ensuring the end of the filter
falls before or on the overall end date.
Results. Figure 9 shows the p95 query latency under both the
one-day and seven-day span. Furthermore, Figure 10 highlights the
average number of aggregate operations for time-filter queries. As
expected, on-demand baselines exhibit significantly higher latency
compared to pre-aggregating solutions. In Q1, pre-aggregation vari-
ants achieve sub-microsecond latencies, while BTree and DuckDB
operate in the sub-millisecond range. The static Segment Tree per-
forms best for time filter queries, with 𝜇Wheel and FiBA variants
demonstrating comparable performance. Despite requiring more
aggregate operations than the standard 𝜇Wheel (as observed in Fig-
ure 10), 𝜇Wheel-hints achieves lower latencies. This performance
gain stems from bypassing the overhead of constructing and exe-
cuting complex combined aggregation plans. Instead, 𝜇Wheel-hints
favours directly accessing individual wheels and capitalizing on
SIMD optimizations. Prefix-enabled 𝜇Wheel offers the lowest la-
tency among 𝜇Wheel variants due to using a pre-computed prefix-
sum array. DuckDB and BTree execute time filter queries with
latencies exceeding 100 microseconds, while pre-aggregation solu-
tions remain below 10 microseconds.
Summary. 𝜇Wheel offers performance rivaling or exceeding spe-
cialized pre-aggregation indexes, while providing a far greater range
of optimization possibilities. These optimizations include leveraging
framework-specific hints during query planning for faster execu-
tion and using prefix-enabled wheels for low-latency queries with
invertible aggregate functions. Another advantage is that 𝜇Wheel
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Figure 11: Offline Analytical Aggregation - Space Usage

exhibits consistent performance as time periods increase, unlike
on-demand solutions that experience latency increases. When the
workload is known apriori, 𝜇Wheel significantly outperforms on-
demand solutions. 𝜇Wheel trades upfront materialization overhead
for low-latency query execution, a tradeoff that makes it ideal for
real-time applications where minimizing query latency is critical.

4.3.2 Space Usage. We now study the space usage of each system
during the execution of each period.
Results. Figure 11 illustrates space usage, demonstrating that
𝜇Wheel consistently requires the least space compared to all pre-
aggregation systems across both periods. Notably, 𝜇Wheel con-
sumes 11.8x less space than the most space-efficient FiBA variant
and 35x less than the best performing one. Furthermore, 𝜇Wheel ex-
hibits a smaller space footprint than an on-demand BTree indexing
raw data with timestamps and aggregates. While DuckDB intro-
duces an additional primary key field per table entry, its specialized



µWheel: Aggregate Management for Streams andQueries DEBS ’24, June 24–28, 2024, Villeurbanne, France

columnar compression techniques result in high space efficiency.
Consequently, DuckDB requires less space than 𝜇Wheel in both
time periods.
Summary. 𝜇Wheel demonstrates high space efficiency, and is only
outperformed by DuckDB which utilizes compression. Unlike pre-
aggregation solutions like FiBA and Segment Tree, 𝜇Wheel lever-
ages the inherent hierarchical nature of time when creating higher-
order aggregates. In adition, 𝜇Wheel achieves significant space
savings by using implicit timestamps, eliminating the need to store
timestamps as required by aggregation trees like FiBA. Further-
more, 𝜇Wheel has the potential to further reduce its space footprint
by incorporating lightweight compression techniques [21].

4.3.3 Summary. The results demonstrate that 𝜇Wheel is signifi-
cantly better suited for workloads requiring real-time responsive-
ness compared to on-demand solutions like DuckDB. However,
it is worth noting that DuckDB is a general-purpose system that
supports a wider range of operations. Also, 𝜇Wheel requires the
trade-off of using a pre-defined aggregation function. Additionally,
𝜇Wheel exhibits comparable performance to specialized aggrega-
tion tree indexes but with a substantially smaller memory footprint.
Finally, we observe the advantage of 𝜇Wheel ’s query optimizer,
which leverages framework-provided hints to generate more effi-
cient execution plans.

5 RELATEDWORK
Streaming Window Aggregation. Prior research addresses var-
ious challenges in streaming window aggregation. Solutions like
FiBA [39] and CPiX [9] focus on handling out-of-order streams.
Others, like Pairs [26], Panes [28], Cutty [14], Scotty [44], and
LightSaber [42], target efficient execution of multiple concurrent
window queries over streams. TAG [31], Disco [7], Desis [49], and
NebulaStream [50] also explore streaming window aggregation
within decentralized environments. Our work complements these
systems by augmenting time-based out-of-order streaming window
aggregation with query management support, bridging the gap
between real-time insights and ad-hoc exploration of streaming
data.
Queryable Stream State. The prospect of queryable state has been
investigated as one of the emerging needs in the domain of stream
processing technologies [12, 16]. The main challenge towards inte-
grating an externally queriable (read-only) state contradicts with
the design of modern stream processors which assume material-
ized stream inputs and outputs as the core interaction point with
these systems, not the internal state. S-Query [46] attempts such an
integration by enhancing relational ACID databases with stream
processing capabilities on top of an existing transactional process-
ing mechanism. S-query, however, does not support warehousing
or temporal queries (e.g., arbitrary temporal windows) and is lim-
ited to regular OLTP ad-hoc queries on live and snapshot states.
Stream processing systems today further support incremental win-
dow aggregation analytics through the use of specialised indexes
[9, 29, 39, 43]. Yet, these solutions are specialized for computing
temporal aggregates on recent data and do not support historical
querying on varying time granularities. Once a window is triggered
in a stream processor, the underlying state is evicted and unavail-
able for on-demand queries. StreamingCube [36] proposes using

a special cubify operator that maintains a multi-dimensional data
lattice. Their solution is tightly integrated within the stream pro-
cessor, whereas 𝜇Wheel is an embeddable aggregate management
system that can be integrated within a stream processor or used as
a standalone system.

6 CONCLUSIONS & FUTUREWORK
This paper proposes 𝜇Wheel, an aggregate management system for
streams and queries. 𝜇Wheel addresses the lack of a unified data
management architecture for online stream and offline analytical
workloads, enhancing aggregate reuse, delivering highly up-to-
date results for both, and minimizing resource utilization. 𝜇Wheel
can be used in either standalone mode or embedded within any
stream processor. Our experimental analysis underscores 𝜇Wheel’s
effectiveness for both streams and queries. 𝜇Wheel’s lazy aggre-
gate synchronization, driven by low watermarks, significantly im-
proves performance for high-volume stream workloads. Moreover,
its wheel-centric query optimizer facilitates low-latency perfor-
mance in ad-hoc query scenarios.
Future Work. Our future work on 𝜇Wheel encompasses several
key expansions. Firstly, we will introduce multi-key capabilities to
broaden 𝜇Wheel’s analytical scope. Secondly, we’ll explore light-
weight compression techniques to optimize its space efficiency fur-
ther. Finally, we plan to investigate a CRDT [37] variant of 𝜇Wheel
that can be merged and used to facilitate analytics in a decentralized
environment.

7 ACKNOWLEDGEMENTS
This work has been supported by Vinnova (Grant No.: 2022-03036),
the Swedish Foundation of Strategic Research (Grant No.: BD15-
0006), and Wallenberg AI NEST (DataBound Computing). Finally,
we thank the anonymous DEBS reviewers who provided feedback
on how to improve the paper.

REFERENCES
[1] Tlc trip record data. https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.

page. (Accessed on 03/03/2023).
[2] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax, S. McVeety,

D. Mills, P. Nordstrom, and S. Whittle. MillWheel: Fault-tolerant stream process-
ing at internet scale. In VLDB, 2013.

[3] T. Akidau, E. Begoli, S. Chernyak, F. Hueske, K. Knight, K. Knowles, D. Mills,
and D. Sotolongo. Watermarks in stream processing systems: Semantics and
comparative analysis of apache flink and google cloud dataflow. Proc. VLDB
Endow., 14(12):3135–3147, jul 2021.

[4] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma,
R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, et al. The dataflow model: A
practical approach to balancing correctness, latency, and cost in massive-scale,
unbounded, out-of-order data processing. In VLDB, 2015.

[5] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi, I. Stoica, and
M. Zaharia. Structured streaming: A declarative api for real-time applications in
apache spark. In Proceedings of the 2018 International Conference on Management
of Data, SIGMOD ’18, page 601–613, New York, NY, USA, 2018. Association for
Computing Machinery.

[6] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi, I. Stoica, and
M. Zaharia. Structured streaming: A declarative api for real-time applications in
apache spark. In Proceedings of the 2018 International Conference on Management
of Data, SIGMOD ’18, pages 601–613, New York, NY, USA, 2018. ACM.

[7] L. Benson, P. M. Grulich, S. Zeuch, V. Markl, and T. Rabl. Disco: Efficient dis-
tributed window aggregation. In Proceedings of the 23nd International Conference
on Extending Database Technology, EDBT 2020, Copenhagen, Denmark, March 30 -
April 02, 2020, pages 423–426. OpenProceedings.org, 2020.

[8] J. L. Bentley and J. B. Saxe. Decomposable searching problems i: Static-to-dynamic
transformation. J. Algorithms, 1(4):301–358, 1980.

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page


DEBS ’24, June 24–28, 2024, Villeurbanne, France Max Meldrum and Paris Carbone.

[9] S. Bou, H. Kitagawa, and T. Amagasa. Cpix: Real-time analytics over out-of-order
data streams by incremental sliding-window aggregation. IEEE Transactions on
Knowledge and Data Engineering, 34:5239–5250, 2021.

[10] P. Carbone, S. Ewen, G. Fóra, S. Haridi, S. Richter, and K. Tzoumas. State man-
agement in Apache Flink: Consistent stateful distributed stream processing. In
VLDB, 2017.

[11] P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos, V. Markl, and K. Tzoumas. Apache
Flink: Stream and batch processing in a single engine. IEEE Data Engineering
Bulletin, 2015.

[12] P. Carbone, M. Fragkoulis, V. Kalavri, and A. Katsifodimos. Beyond analytics:
The evolution of stream processing systems. In Proceedings of the 2020 ACM
SIGMOD international conference on Management of data, pages 2651–2658, 2020.

[13] P. Carbone, A. Katsifodimos, and S. Haridi. Streamwindow aggregation semantics
and optimization., 2019.

[14] P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, and V. Markl. Cutty: Aggregate
sharing for user-defined windows. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management. ACM, 2016.

[15] S. Chaudhuri and U. Dayal. An overview of data warehousing and olap technology.
SIGMOD Rec., 26(1):65–74, mar 1997.

[16] M. Fragkoulis, P. Carbone, V. Kalavri, and A. Katsifodimos. A survey on the
evolution of stream processing systems. The VLDB Journal, 33(2):507–541, nov
2023.

[17] Y. Fu and C. Soman. Real-time data infrastructure at uber. CoRR, abs/2104.00087,
2021.

[18] K. P. Gaffney, M. Prammer, L. Brasfield, D. R. Hipp, D. Kennedy, and J. M. Patel.
Sqlite: Past, present, and future. Proc. VLDB Endow., 15(12):3535–3547, sep 2022.

[19] S. Geffner, D. Agrawal, A. El Abbadi, and T. Smith. Relative prefix sums: an
efficient approach for querying dynamic olap data cubes. In Proceedings 15th
International Conference on Data Engineering (Cat. No.99CB36337), pages 328–335,
1999.

[20] C. Gencer, M. Topolnik, V. Ďurina, E. Demirci, E. B. Kahveci, A. Gürbüz, O. Lukáš,
J. Bartók, G. Gierlach, F. Hartman, U. Yılmaz, M. Doğan, M. Mandouh, M. Fragk-
oulis, and A. Katsifodimos. Hazelcast jet: low-latency stream processing at the
99.99th percentile. Proc. VLDB Endow., 14(12):3110–3121, jul 2021.

[21] L. Heinzl, B. Hurdelhey, M. Boissier, M. Perscheid, and H. Plattner. Evaluating
lightweight integer compression algorithms in column-oriented in-memory dbms.
In 12th International Workshop on Accelerating Analytics and Data Management
Systems Using Modern Processor and Storage Architectures, ADMS@VLDB 2021,
Copenhagen, Denmark, August 16, 2021, 8 2021.

[22] M. Hirzel, S. Schneider, and K. Tangwongsan. Sliding-window aggregation
algorithms: Tutorial. In Proceedings of the 11th ACM International Conference on
Distributed and Event-Based Systems, DEBS ’17, page 11–14, New York, NY, USA,
2017. Association for Computing Machinery.

[23] J.-F. Im, K. Gopalakrishna, S. Subramaniam, M. Shrivastava, A. Tumbde, X. Jiang,
J. Dai, S. Lee, N. Pawar, J. Li, and R. Aringunram. Pinot: Realtime olap for 530
million users. In Proceedings of the 2018 International Conference on Management
of Data, SIGMOD ’18, page 583–594, New York, NY, USA, 2018. Association for
Computing Machinery.

[24] Z. Jerzak, T. Heinze, M. Fehr, D. Gröber, R. Hartung, and N. Stojanovic. The debs
2012 grand challenge. In Proceedings of the 6th ACM International Conference on
Distributed Event-Based Systems, DEBS ’12, page 393–398, New York, NY, USA,
2012. Association for Computing Machinery.

[25] A. Koliousis, M. Weidlich, R. Castro Fernandez, A. L. Wolf, P. Costa, and P. Piet-
zuch. Saber: Window-based hybrid stream processing for heterogeneous archi-
tectures. In Proceedings of the 2016 International Conference on Management of
Data, SIGMOD ’16, page 555–569, New York, NY, USA, 2016. Association for
Computing Machinery.

[26] S. Krishnamurthy, C. Wu, and M. Franklin. On-the-fly sharing for streamed
aggregation. In Proceedings of the 2006 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’06, page 623–634, New York, NY, USA, 2006.
Association for Computing Machinery.

[27] D. Leijen, B. Zorn, and L. de Moura. Mimalloc: Free list sharding in action.
Technical Report MSR-TR-2019-18, Microsoft, June 2019.

[28] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. No pane, no gain:
Efficient evaluation of sliding-window aggregates over data streams. SIGMOD
Rec., 34(1):39–44, mar 2005.

[29] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. Semantics and evaluation
techniques for window aggregates in data streams. In Proceedings of the 2005
ACM SIGMOD International Conference on Management of Data, SIGMOD ’05,
page 311–322, New York, NY, USA, 2005. Association for Computing Machinery.

[30] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson, and D. Maier. Out-of-
order processing: A new architecture for high-performance stream systems. In
VLDB, 2008.

[31] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: a tiny aggregation
service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev., 36(SI):131–146, dec
2003.

[32] M. Meldrum, K. Segeljakt, L. Kroll, P. Carbone, C. Schulte, and S. Haridi. Arcon:
Continuous and deep data stream analytics. In Proceedings of Real-Time Business

Intelligence and Analytics, BIRTE 2019, New York, NY, USA, 2019. Association for
Computing Machinery.

[33] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst, I. Gupta, and
R. H. Campbell. Samza: Stateful scalable stream processing at Linkedin. In VLDB,
2017.

[34] P. Pedreira, O. Erling, M. Basmanova, K. Wilfong, L. Sakka, K. Pai, W. He, and
B. Chattopadhyay. Velox: meta’s unified execution engine. Proc. VLDB Endow.,
15(12):3372–3384, aug 2022.

[35] M. Raasveldt and H. Mühleisen. Duckdb: an embeddable analytical database. In
P. A. Boncz, S. Manegold, A. Ailamaki, A. Deshpande, and T. Kraska, editors,
Proceedings of the 2019 International Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pages 1981–
1984. ACM, 2019.

[36] S. A. Shaikh and H. Kitagawa. Streamingcube: Seamless integration of stream
processing and olap analysis. IEEE Access, 8:104632–104649, 2020.

[37] M. Shapiro, N. Preguiça, C. Baquero, andM. Zawirski. Conflict-free replicated data
types. In Proceedings of the 13th International Conference on Stabilization, Safety,
and Security of Distributed Systems, SSS’11, page 386–400, Berlin, Heidelberg,
2011. Springer-Verlag.

[38] K. Tangwongsan, M. Hirzel, and S. Schneider. Low-latency sliding-window aggre-
gation in worst-case constant time. In Proceedings of the 11th ACM International
Conference on Distributed and Event-Based Systems, DEBS ’17, page 66–77, New
York, NY, USA, 2017. Association for Computing Machinery.

[39] K. Tangwongsan, M. Hirzel, and S. Schneider. Optimal and general out-of-order
sliding-window aggregation. Proc. VLDB Endow., 12(10):1167–1180, jun 2019.

[40] K. Tangwongsan, M. Hirzel, and S. Schneider. Out-of-order sliding-window
aggregation with efficient bulk evictions and insertions. Proc. VLDB Endow.,
16(11):3227–3239, 2023.

[41] K. Tangwongsan, M. Hirzel, S. Schneider, and K.-L. Wu. General incremental
sliding-window aggregation. Proc. VLDB Endow., 8(7):702–713, feb 2015.

[42] G. Theodorakis, A. Koliousis, P. Pietzuch, and H. Pirk. Lightsaber: Efficient
window aggregation on multi-core processors. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’20, page
2505–2521, New York, NY, USA, 2020. Association for Computing Machinery.

[43] J. Traub, P. Grulich, A. Cuéllar, S. Breß, A. Katsifodimos, T. Rabl, and V. Markl.
Efficient window aggregation with general stream slicing. In M. Herschel, H. Gal-
hardas, C. Binnig, Z. Kaoudi, I. Fundulaki, and B. Reinwald, editors, Advances
in Database Technology - EDBT 2019, pages 97–108. OpenProceedings.org, 2019.
22nd International Conference on Extending Database Technology, EDBT 2019 ;
Conference date: 26-03-2019 Through 29-03-2019.

[44] J. Traub, P. M. Grulich, A. R. Cuéllar, S. Breß, A. Katsifodimos, T. Rabl, and
V. Markl. Efficient window aggregation with general stream slicing. In 22th
International Conference on Extending Database Technology (EDBT), 2019.

[45] G. Varghese and T. Lauck. Hashed and hierarchical timing wheels: Data structures
for the efficient implementation of a timer facility. In Proceedings of the Eleventh
ACM Symposium on Operating Systems Principles, SOSP ’87, page 25–38, New
York, NY, USA, 1987. Association for Computing Machinery.

[46] J. Verheijde, V. Karakoidas, M. Fragkoulis, and A. Katsifodimos. S-QUERY: open-
ing the black box of internal stream processor state. In 38th IEEE International
Conference on Data Engineering, ICDE 2022, Kuala Lumpur, Malaysia, May 9-12,
2022, pages 1314–1327. IEEE, 2022.

[47] J. Verwiebe, P. M. Grulich, J. Traub, and V. Markl. Survey of window types for
aggregation in stream processing systems. The VLDB Journal, pages 1–27, 2023.

[48] Y. Wang and Z. Liu. A sneak peek at risingwave: a cloud-native streaming
database. In Proceedings of the 16th ACM International Conference on Distributed
and Event-Based Systems, DEBS ’22, page 190–193, New York, NY, USA, 2022.
Association for Computing Machinery.

[49] W. Yue, L. Benson, and T. Rabl. Desis: Efficient window aggregation in decentral-
ized networks. 2023.

[50] S. Zeuch, A. Chaudhary, B. D. Monte, H. Gavriilidis, D. Giouroukis, P. M. Grulich,
S. Breß, J. Traub, and V.Markl. The nebulastream platform for data and application
management in the internet of things. In 10th Conference on Innovative Data
Systems Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020,
Online Proceedings. www.cidrdb.org, 2020.

[51] C. Zhang, R. Akbarinia, and F. Toumani. Efficient incremental computation of
aggregations over sliding windows. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, KDD ’21, page 2136–2144,
New York, NY, USA, 2021. Association for Computing Machinery.


	Abstract
	1 Introduction
	2 Motivation and Overview
	3 Design
	3.1 Aggregation Framework
	3.2 Architectural Overview
	3.3 Writer Wheel
	3.4 Reader Wheel
	3.5 Window Aggregation
	3.6 Lazy Synchronization

	4 Evaluation
	4.1 Experimental Setup
	4.2 Online Stream Aggregation
	4.3 Offline Analytical Aggregation

	5 Related Work
	6 Conclusions & Future Work
	7 Acknowledgements
	References

